全面地聊一下GPT的前世和今生

109次阅读

同属自然界的鸟类,我们对比一下体型大小都差不多的乌鸦和鹦鹉。鹦鹉有很强的语言模仿能力,你说一个短句,多说几遍,它能重复,这就类似于当前的由数据驱动的聊天机器人。二者都可以说话,但鹦鹉和聊天机器人都不明白说话的语境和语义,也就是它们不能把说的话对应到物理世界和社会的物体、场景、人物,不符合因果与逻辑。

可是,乌鸦就远比鹦鹉聪明,它们能够制造工具,懂得各种物理的常识和人的活动的社会常识。

下面,我就介绍一只乌鸦,它生活在复杂的城市环境中,与人类交互和共存。YouTube 网上有不少这方面的视频,大家可以找来看看。我个人认为,人工智能研究该搞一个“乌鸦图腾”,因为我们必须认真向它们学习。

上图 a 是一只乌鸦,被研究人员在日本发现和跟踪拍摄的。乌鸦是野生的,也就是说,没人管,没人教。它必须靠自己的观察、感知、认知、学习、推理、执行,完全自主生活。假如把它看成机器人的话,它就在我们现实生活中活下来。如果这是一个自主的流浪汉进城了,他要在城里活下去,包括与城管周旋。

首先,乌鸦面临一个任务,就是寻找食物。它找到了坚果(至于如何发现坚果里面有果肉,那是另外一个例子了),需要砸碎,可是这个任务超出它的物理动作的能力。其它动物,如大猩猩会使用工具,找几块石头,一块大的垫在底下,一块中等的拿在手上来砸。乌鸦怎么试都不行,它把坚果从天上往下抛,发现解决不了这个任务。在这个过程中,它就发现一个诀窍,把果子放到路上让车轧过去(图 b),这就是“鸟机交互”了。

后来进一步发现,虽然坚果被轧碎了,但它到路中间去吃是一件很危险的事。因为在一个车水马龙的路面上,随时它就牺牲了。我这里要强调一点,这个过程是没有大数据训练的,也没有所谓监督学习,乌鸦的生命没有第二次机会。这是与当前很多机器学习,特别是深度学习完全不同的机制。

然后,它又开始观察了,见图 c。它发现在靠近红绿路灯的路口,车子和人有时候停下了。这时,它必须进一步领悟出红绿灯、斑马线、行人指示灯、车子停、人流停这之间复杂的因果链。甚至,哪个灯在哪个方向管用、对什么对象管用。搞清楚之后,乌鸦就选择了一根正好在斑马线上方的一根电线,蹲下来了(图 d)。

这里我要强调另一点,也许它观察和学习的是别的地点,那个点没有这些蹲点的条件。它必须相信,同样的因果关系,可以搬到当前的地点来用。这一点,当前很多机器学习方法是做不到的。比如,一些增强学习方法,让机器人抓取一些固定物体,如积木玩具,换一换位置都不行;打游戏的人工智能算法,换一换画面,又得重新开始学习。

它把坚果抛到斑马线上,等车子轧过去,然后等到行人灯亮了(图 e)。这个时候,车子都停在斑马线外面,它终于可以从容不迫地走过去,吃到了地上的果肉。你说这个乌鸦有多聪明,这是我期望的真正的智能。

这个乌鸦给我们的启示,至少有三点:

其一、它是一个完全自主的智能。感知、认知、推理、学习、和执行,它都有。我们前面说的,世界上一批顶级的科学家都解决不了的问题,乌鸦向我们证明了,这个解存在。

其二、你说它有大数据学习吗?这个乌鸦有几百万人工标注好的训练数据给它学习吗?没有,它自己把这个事通过少量数据想清楚了,没人教它。

其三、乌鸦头有多大?不到人脑的 1% 大小。人脑功耗大约是 10-25 瓦,它就只有 0.1-0.2 瓦,就实现功能了,根本不需要前面谈到的核动力发电。这给硬件芯片设计者也提出了挑战和思路。十几年前我到中科院计算所讲座,就说要做视觉芯片 VPU,应该比后来的 GPU 更超前。我最近参与了一个计算机体系结构的大项目,也有这个目标。

在座的年轻人想想看,你们有很大的机会在这里面,这个解存在,但是我们不知道怎么用一个科学的手段去实现这个解。

讲通俗一点,我们要寻找“乌鸦”模式的智能,而不要“鹦鹉”模式的智能。当然,我们必须也要看到,“鹦鹉”模式的智能在商业上,针对某些垂直应用或许有效。

原文链接:https://baijiahao.baidu.com/s?id=1761665152651506645&wfr=spider&for=pc

正文完
 
不知道
版权声明:本站原创文章,由 不知道 2023-07-10发表,共计1649字。
转载说明:声明:本站内容均来自互联网,归原创作者所有,如有侵权必删除。 本站文章皆由CC-4.0协议发布,如无来源则为原创,转载请注明出处。