【TED演讲文稿】李开复:人工智能如何拯救我们的人性

128次阅读

[作者简介]

[中英简介]

[中英演讲文稿]

[站内视频链接 / 4 种字幕]

【TED演讲文稿】李开复:人工智能如何拯救我们的人性插图

[作者简介]: 

李开复:

【TED演讲文稿】李开复:人工智能如何拯救我们的人性插图1
李开复[投资者,计算机科学家]

    在 Sinovation Ventures,李开复投资于下一代中国高科技公司。

    

     李开复博士对全球技术行业有着独到的见解,在中美之间广泛合作,从事人工智能研究,开发和投资已有 30 多年。他是中国顶级技术投资者之一,在人工智能领域开展早期开拓性工作,并与多家美国科技巨头合作。 

     李开复是 Sinovation Ventures 的董事长兼首席执行官,负责管理 17 亿美元的双币投资基金。Sinovation 是一家精通技术的领先投资公司,专注于发展中国高科技公司。Lee 还担任 Sinovation Ventures 人工智能研究所的总裁。

     在 2009 年创立 Sinovation 之前,Lee 是谷歌中国的总裁。此前,他曾在微软,SGI 和 Apple 担任过高管职位。他是电气和电子工程师协会(IEEE)的研究员,并且是 100 人委员会的副主席,并被“时代”杂志评为世界上最具影响力的 100 人之一。他是七本中文畅销书的作者,于 2018 年秋季在国际上推出了他的新书  AI Superpowers,并在社交媒体上拥有超过 5000 万粉丝。

     在人工智能领域,李创立了微软中国研究院,被中国麻省理工学院技术评论评为最热门的研究实验室。后来更名为微软亚洲研究院,该研究所培训了中国绝大多数人工智能领导者,包括百度,腾讯,阿里巴巴,联想,华为和海尔的 CTO 或 AI 负责人。与苹果公司合作时,李开复以语音和自然语言领导人工智能项目,该项目出现在 ABC 电视台的“早安美国”和“华尔街日报”的头版。他撰写了 10 项美国专利,以及 100 多份期刊和会议论文。

【TED演讲文稿】李开复:人工智能如何拯救我们的人性插图

[中英简介]:

    AI is massively transforming our world, but there's one thing it cannot do: love. In a visionary talk, computer scientist Kai-Fu Lee details how the US and China are driving a deep learning revolution — and shares a blueprint for how humans can thrive in the age of AI by harnessing compassion and creativity. "AI is serendipity," Lee says. "It is here to liberate us from routine jobs, and it is here to remind us what it is that makes us human."

【TED演讲文稿】李开复:人工智能如何拯救我们的人性插图2

     人工智能正在大规模地改变我们的世界,但有一件事是它无法做到的:爱。在一次富有远见的演讲中,计算机科学家李开复详细介绍了美国和中国如何推动深度学习革命,并分享了人类如何在人工智能时代利用同情心和创造力茁壮成长的蓝图。“人工智能的发展是机缘巧合,”李说。“它的到来将把我们从常规工作中解放出来,它的到来也提醒我们人因何为人。”

【TED演讲文稿】李开复:人工智能如何拯救我们的人性插图

[中英演讲文稿]:

00:00

I'm going to talk about how AI and mankind can coexist, but first, we have to rethink about our human values. So let me first make a confession about my errors in my values.

我将会谈谈人工智能和人类如何能够共存,但首先,我们需要重新思考人类价值观。所以首先让我坦白我价值观中曾有的错误。

00:13

It was 11 o'clock, December 16, 1991. I was about to become a father for the first time. My wife, Shen-Ling, lay in the hospital bed going through a very difficult 12-hour labor. I sat by her bedside but looked anxiously at my watch, and I knew something that she didn't. I knew that if in one hour, our child didn't come, I was going to leave her there and go back to work and make a presentation about AI to my boss, Apple's CEO. Fortunately, my daughter was born at 11:30 —

那是 1991 年 12 月 16 日 11 点。我即将首次成为父亲。我的妻子,先铃,躺在病床上 经历着一段艰辛并为时 12 小时的分娩。我坐在床边 但却焦虑地望着我的手表,而我知道一些她不知道的事。我知道如果在一小时内,我们的孩子还未出生,我将要将她留在那里 赶去上班 并向我的老板,苹果的首席执行官 做一个有关人工智能的报告。幸运的是,我的女儿在 11:30 出生了 –

00:59

sparing me from doing the unthinkable, and to this day, I am so sorry for letting my work ethic take precedence over love for my family.

让我免做荒唐事,而一直到今天,我非常惭愧曾经 把工作摆在家庭前面。

My AI talk, however, went off brilliantly.

但是,我做的人工智能报告非常成功。

Apple loved my work and decided to announce it at TED1992, 26 years ago on this very stage. I thought I had made one of the biggest, most important discoveries in AI, and so did the "Wall Street Journal" on the following day.

苹果喜欢我的工作成果 并决定在 TED1992 会议上将其宣布,26 年前就在这个舞台上。我以为我完成了人工智能领域 一个最重大的发现,第二天《华尔街日报》也是这么认为。

01:39

But as far as discoveries went, it turned out, I didn't discover India, or America. Perhaps I discovered a little island off of Portugal. But the AI era of discovery continued, and more scientists poured their souls into it. About 10 years ago, the grand AI discovery was made by three North American scientists, and it's known as deep learning.

但随着越来越多的发现,结果是,我并没有发现印度或是美洲。或许我发现的是葡萄牙附近的一个小岛。但是人工智能的发现时代持续了下去,而越来越多的科学家全心全意投入其中。大约 10 年前,三名北美科学家 做出了重大的人工智能发现,那就是深度学习。

Deep learning is a technology that can take a huge amount of data within one single domain and learn to predict or decide at superhuman accuracy. For example, if we show the deep learning network a massive number of food photos, it can recognize food such as hot dog or no hot dog.

深度学习是一个能利用海量数据 在单一领域中 学会做超高精确度的预测或决策的技术。例如,如果我们向深度学习网络显示 海量的食物照片,它可以辨认出食物,比如热狗或不是热狗。

02:29

Or if we show it many pictures and videos and sensor data from driving on the highway, it can actually drive a car as well as a human being on the highway. And what if we showed this deep learning network all the speeches made by President Trump? Then this artificially intelligent President Trump, actually the network —

若如果我们向它显示许多 在高速公路上开车的照片、视频和传感数据,它其实可以把车开得像人一样好 行驶在高速公路上。若我们向这深度学习网络显示 特朗普总统发表过的所有演讲呢?那么这个人工智能的特朗普总统,其实是该网络 —

can —

可以 —

You like double oxymorons, huh?

你们喜欢一语双关的话,对吧?

(Laughter)

(笑声)

(Applause)

(掌声)

So this network, if given the request to make a speech about AI, he, or it, might say —

所以此网络,若被要求发表一场 关于人工智能的演讲,他,或它,或许会说 —

(Recording) Donald Trump: It's a great thing to build a better world with artificial intelligence.

(录音)特朗普:运用人工智能来建造 一个更完美的世界是件大好事。

Kai-Fu Lee: And maybe in another language?

李开复:或许用另一种语言来说?

DT: (Speaking Chinese)

特朗普(讲中文):人工智能正在改变世界

KFL: You didn't know he knew Chinese, did you?

你们不知道他会说中文吧?

03:38

So deep learning has become the core in the era of AI discovery, and that's led by the US. But we're now in the era of implementation, where what really matters is execution, product quality, speed and data. And that's where China comes in. Chinese entrepreneurs, who I fund as a venture capitalist, are incredible workers, amazing work ethic. My example in the delivery room is nothing compared to how hard people work in China. As an example, one startup tried to claim work-life balance: "Come work for us because we are 996." And what does that mean? It means the work hours of 9am to 9pm, six days a week. That's contrasted with other startups that do 997.

所以深度学习已成为人工智能发现时代的核心,并由美国领导着。但我们现在身处实践时代,真正关键的是执行力、产品质量、速度和数据。这就是中国上场的时候了。中国企业家,我作为风险投资人提供他们资本,他们是非凡的实干者,工作拼命。我在产房的例子与中国人的工作卖力程度 相比根本不算什么。例如,有个创业公司声称能工作生活平衡:“加入我们吧,因为我们是 996。”那是什么意思?那是指工作时间从上午 9 点至晚上 9 点、每周六天。这与其他实施 997 的创业公司形成对比。

04:27

And the Chinese product quality has consistently gone up in the past decade, and that's because of a fiercely competitive environment. In Silicon Valley, entrepreneurs compete in a very gentlemanly fashion, sort of like in old wars in which each side took turns to fire at each other.

中国产品的质量在 过去十年中持续提升,这归功于极其激烈的竞争环境。在硅谷,企业家用非常绅士的方式来竞争,有点像是旧时的战争 双方轮流向对方开火。

But in the Chinese environment, it's truly a gladiatorial fight to the death. In such a brutal environment, entrepreneurs learn to grow very rapidly, they learn to make their products better at lightning speed, and they learn to hone their business models until they're impregnable. As a result, great Chinese products like WeChat and Weibo are arguably better than the equivalent American products from Facebook and Twitter.

但在中国的环境里,它真的是一场不死不休的角斗士之战。在如此残酷的环境里,企业家学会如何迅速成长,他们学会如何雷厉风行地改进产品,他们学会如何完善其商业模式 直至坚不可摧。结果是,优秀的中国产品,如微信和微博 可以说比脸书和推特等同类美国产品更好。中国市场欢迎这种变化,并进一步加速变化和转型。

05:19

And the Chinese market embraces this change and accelerated change and paradigm shifts. As an example, if any of you go to China, you will see it's almost cashless and credit card-less, because that thing that we all talk about, mobile payment, has become the reality in China. In the last year, 18.8 trillion US dollars were transacted on mobile internet, and that's because of very robust technologies built behind it. It's even bigger than the China GDP. And this technology, you can say, how can it be bigger than the GDP? Because it includes all transactions: wholesale, channels, retail, online, offline, going into a shopping mall or going into a farmers market like this. The technology is used by 700 million people to pay each other, not just merchants, so it's peer to peer, and it's almost transaction-fee-free. And it's instantaneous, and it's used everywhere. And finally, the China market is enormous. This market is large, which helps give entrepreneurs more users, more revenue, more investment, but most importantly, it gives the entrepreneurs a chance to collect a huge amount of data which becomes rocket fuel for the AI engine. So as a result, the Chinese AI companies have leaped ahead so that today, the most valuable companies in computer vision, speech recognition, speech synthesis, machine translation and drones are all Chinese companies.

比如说,如果你们中任何人去中国,你将会看到它几乎是无现金和无信用卡社会,因为我们都在讨论的那件事,移动支付,在中国已成为现实。在过去一年,18.8 万亿美金通过移动网络完成交易,而这归功于支撑其项背的强劲科技。它甚至大过中国的国内生产总值。而此技术,你可以说,它怎么会大过国内生产总值?这是因为它包括了所有交易:批发、渠道、零售、网上、离线,去大商场或去这样的农贸市场。这项技术被 7 亿人用来互相支付,不仅局限于商家,所以它是点对点的,而它几乎是无手续费的。它是即时的,被到处使用。最后一点,中国市场十分巨大。市场庞大,帮助了企业家获得更多用户、更高收入、更多投资,但最重要的,它给了企业家一个收集海量数据的机会 这成为了人工智能引擎的燃料。结果,中国人工智能公司已往前飞跃,所以如今,在电脑视觉、语音识别、语音合成、机器翻译和无人机领域中 最具价值的公司都是中国公司。所以,随着美国引领发现时代 和中国引领实践时代,我们正处于一个伟大时代 两个超级大国的双联引擎正合作共进 驱动我们人类从未见过的 最迅速的科技革命。

So with the US leading the era of discovery and China leading the era of implementation, we are now in an amazing age where the dual engine of the two superpowers are working together to drive the fastest revolution in technology that we have ever seen as humans. And this will bring tremendous wealth, unprecedented wealth: 16 trillion dollars, according to PwC, in terms of added GDP to the worldwide GDP by 2030. It will also bring immense challenges in terms of potential job replacements. Whereas in the Industrial Age it created more jobs because craftsman jobs were being decomposed into jobs in the assembly line, so more jobs were created. But AI completely replaces the individual jobs in the assembly line with robots. And it's not just in factories, but truckers, drivers and even jobs like telesales, customer service and hematologists as well as radiologists over the next 15 years are going to be gradually replaced by artificial intelligence. And only the creative jobs —

这将会带来极大的财富、前所未有的财富:据普华永道估计,到 2030 年,人工智能将带来 16 万亿美元的全球 GDP 增长 它也将带来巨大挑战 在可能出现的失业再就业问题上。在工业革命时代,它创造了更多工作 因为手工工匠的工作被分解成 生产线上的各种工作,所以创造了更多工作。但是人工智能让流水线上的个体工作 完全被机器人取代。这不仅发生在工厂里,而且货车司机、驾驶员 甚至于像是电话销售、客服、血液科和放射科医生的工作,在未来的 15 年内 都将慢慢被人工智能取代。而只有创造性工作 –

I have to make myself safe, right? Really, the creative jobs are the ones that are protected, because AI can optimize but not create.

我必须保护我自己,对吧?真的,创造性工作是有保障的工作,因为人工智能可以优化但不能创造。

08:33

But what's more serious than the loss of jobs is the loss of meaning, because the work ethic in the Industrial Age has brainwashed us into thinking that work is the reason we exist, that work defined the meaning of our lives. And I was a prime and willing victim to that type of workaholic thinking. I worked incredibly hard. That's why I almost left my wife in the delivery room, that's why I worked 996 alongside my entrepreneurs. And that obsession that I had with work ended abruptly a few years ago when I was diagnosed with fourth stage lymphoma. The PET scan here shows over 20 malignant tumors jumping out like fireballs, melting away my ambition. But more importantly, it helped me reexamine my life. Knowing that I may only have a few months to live caused me to see how foolish it was for me to base my entire self-worth on how hard I worked and the accomplishments from hard work. My priorities were completely out of order. I neglected my family. My father had passed away, and I never had a chance to tell him I loved him. My mother had dementia and no longer recognized me, and my children had grown up.

但比失去工作更严重的是失去意义,因为工业革命时代的工作伦理 已让我们洗脑相信工作赋予我们存在的理由,工作赋予我们生活的意义。而我就是个典型并自愿接受 那种工作狂思想的受害者。我工作异常努力。那就是为什么我几乎将我的妻子独自留在产房内,那就是为什么我 996 地与企业家们工作。我对工作的痴迷在几年前戛然而止 因为我被确诊患上 第四期淋巴瘤。这个 PET 扫描显示二十多个恶性肿瘤 如火球般喷涌而出,把我的壮志雄心付之一炬。但更重要的是,它帮我重新审视我的人生。知道我可能只剩下几个月的生命 令我看清 把自我价值完全建立在 工作强度和工作成就上是多么愚蠢。我生活中的优先级完全本末倒置。我疏于关心家庭。我的父亲过世了,我从没机会告诉他我爱他。我的母亲失智了,再也认不出我,我的孩子们都已长大成人。

10:04

During my chemotherapy, I read a book by Bronnie Ware who talked about dying wishes and regrets of the people in the deathbed. She found that facing death, nobody regretted that they didn't work hard enough in this life. They only regretted that they didn't spend enough time with their loved ones and that they didn't spread their love.

在我化疗期间,我读了邦妮·韦尔的一本书 写的是人们濒死时的心愿和懊悔。她发现面对死亡时,没人遗憾自己工作得不够努力。他们只后悔自己没花更多时间 与所爱之人相伴相守,后悔没有传递自己的爱。

So I am fortunately today in remission.

值得庆幸的是,我的病情现在有所缓解

10:41

So I can be back at TED again to share with you that I have changed my ways. I now only work 965 — occasionally 996, but usually 965. I moved closer to my mother, my wife usually travels with me, and when my kids have vacation, if they don't come home, I go to them. So it's a new form of life that helped me recognize how important it is that love is for me, and facing death helped me change my life, but it also helped me see a new way of how AI should impact mankind and work and coexist with mankind, that really, AI is taking away a lot of routine jobs, but routine jobs are not what we're about.

所以我可以重回 TED 舞台 和你们分享我的改变。我如今只工作 965 — 偶尔 996,但通常 965。我搬到离母亲更近的住所,我妻子通常与我相伴旅行,当我的孩子们休假时,若他们不回家,我会去看他们。这种新生活方式帮我认清 爱对我来说是多么重要,濒死经历改变了我的生活,而且让我重新审视 人工智能应如何影响人类 影响工作,与人共存,确实,人工智能正带走很多重复性工作,但我们并非因为擅长重复性工作而为人。

11:32

Why we exist is love. When we hold our newborn baby, love at first sight, or when we help someone in need, humans are uniquely able to give and receive love, and that's what differentiates us from AI.

我们存在的理由是爱。当我们怀抱新生儿,当我们一见钟情,当我们助人于难,唯独人类才能爱与被爱,爱使我们有别于人工智能。

Despite what science fiction may portray, I can responsibly tell you that AI has no love. When AlphaGo defeated the world champion Ke Jie, while Ke Jie was crying and loving the game of go, AlphaGo felt no happiness from winning and certainly no desire to hug a loved one.

无论科幻电影如何描述,我可以负责任地告诉你,人工智能程序没有爱的能力。当阿法狗围棋打败世界冠军柯洁时,柯洁哭着并爱着围棋,但阿法狗无法从胜利中感受到喜悦,也不会渴望拥抱一个心爱的人。

12:11

So how do we differentiate ourselves as humans in the age of AI? We talked about the axis of creativity, and certainly that is one possibility, and now we introduce a new axis that we can call compassion, love, or empathy. Those are things that AI cannot do. So as AI takes away the routine jobs, I like to think we can, we should and we must create jobs of compassion. You might ask how many of those there are, but I would ask you: Do you not think that we are going to need a lot of social workers to help us make this transition? Do you not think we need a lot of compassionate caregivers to give more medical care to more people? Do you not think we're going to need 10 times more teachers to help our children find their way to survive and thrive in this brave new world? And with all the newfound wealth, should we not also make labors of love into careers and let elderly accompaniment or homeschooling become careers also?

那我们如何在人工智能时代中 将自己作为人类区分出来?我们谈到过创造性维度,那当然是一个可能性,现在我们要介绍一个新维度,称之为同情心、爱或同理心。那些都是人工智能做不到的事。当人工智能带走重复性工作时,我想我们可以、应该而且必须创造关爱型工作。你或许会问那种工作到底有多少?但我想问问你:你不认为我们将需要许多社工 来帮助我们平稳过渡吗?你不认为我们需要许多富有同情心的看护 来为更多人提供更多医疗护理吗?你不认为我们将需要多 10 倍的老师 来帮助孩子们寻找 在这个勇敢新世界里的生存和成长之道吗?有了新获得的财富,我们不应该创造以人性关爱为本的工作 把老人护工或在家教育变成工作种类吗?

This graph is surely not perfect, but it points at four ways that we can work with AI. AI will come and take away the routine jobs and in due time, we will be thankful. AI will become great tools for the creatives so that scientists, artists, musicians and writers can be even more creative. AI will work with humans as analytical tools that humans can wrap their warmth around for the high-compassion jobs. And we can always differentiate ourselves with the uniquely capable jobs that are both compassionate and creative, using and leveraging our irreplaceable brains and hearts. So there you have it: a blueprint of coexistence for humans and AI.

这个图表不甚完美,但展示了四种我们与人工智能共事的方式。人工智能将代替我们承担重复性工作,到时候我们将甚感欣慰。人工智能将成为创造者的好工具 所以科学家、艺术家、音乐家和作家 能变得更有创造力。人工智能将作为分析工具与人共事,人类将温暖倾注于高同情性工作。我们可以区分自己 通过独特擅长的工作 兼具同情心和创造性,充分利用我们独一无二的头脑和内心。这就是:人类与人工智能共存的蓝图。

14:15

AI is serendipity. It is here to liberate us from routine jobs, and it is here to remind us what it is that makes us human. So let us choose to embrace AI and to love one another.

人工智能的发展是机缘巧合。它的到来将把我们从常规工作中解放出来,它的到来也提醒我们人因何为人。所以让我们选择拥抱人工智能并互相关爱。

Thank you.(Applause)

谢谢。(掌声)

【TED演讲文稿】李开复:人工智能如何拯救我们的人性插图

[站内视频链接]:

【TED演讲文稿】李开复:人工智能如何拯救我们的人性插图3

—————— 

微信公共号平台在 隔天 同步更新其内容,还有 音频下载链接 + 英文文稿.[专栏有的也有]

请查收(保存下方二维码至相册,微信扫一扫即可关注微信公共号).++++ 英文文稿

【TED演讲文稿】李开复:人工智能如何拯救我们的人性插图4
微信公共号搜索:TEDPush 演讲,即可关注

 

原文链接:https://www.bilibili.com/read/cv1073761/

正文完
 
不知道
版权声明:本站原创文章,由 不知道 2023-08-13发表,共计13647字。
转载说明:声明:本站内容均来自互联网,归原创作者所有,如有侵权必删除。 本站文章皆由CC-4.0协议发布,如无来源则为原创,转载请注明出处。